Trade name: OtoVita Professional Disinfection Concentrate

Substance number: 71202

Version: 2 / GB

Replaces Version: 1 / GB

Date revised: 26.04.2024 Print date: 26.04.2024

SECTION 1: Identification of the substance/mixture and of the company/undertaking

1.1. Product identifier

OtoVita Professional Disinfection Concentrate

UFI

UFI: V16C-3674-Y00Q-4NE5

1.2. Relevant identified uses of the substance or mixture and uses advised against

Use of the substance/preparation

Disinfectant of earmolds

1.3. Details of the supplier of the safety data sheet

Address/Manufacturer

Dreve Otoplastik GmbH Max-Planck-Straße 31 DE-59423 Unna Telephone no. +49 2303 8807-0 Fax no. +49 2303 8807-29 Information provided Department Research & Development: Fax: +49 2303 8807-562 by / telephone E-mail address of sicherheitsdatenblatt@dreve.com person responsible for this SDS

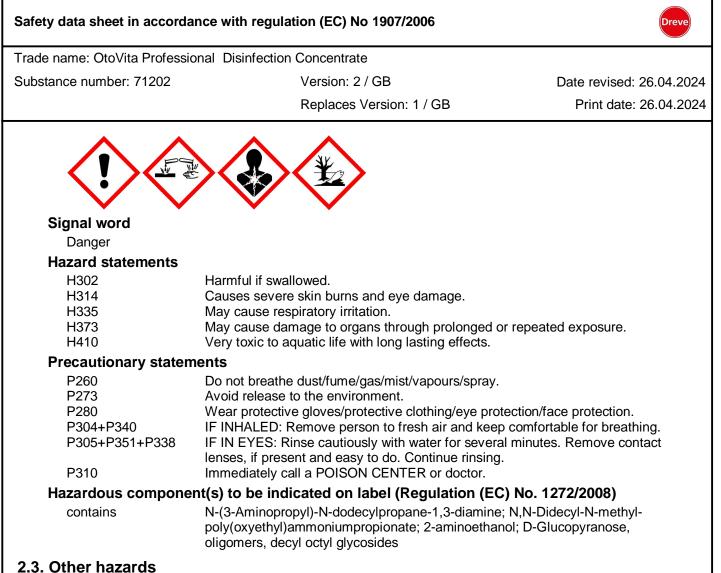
1.4. Emergency telephone number

Henkel Fire Department / 24h-Emergency-Contact-No.: +49 211 797-3350

SECTION 2: Hazards identification

2.1. Classification of the substance or mixture

Classification (Regulation (EC) No. 1272/2008)


Classification (Regulation (EC) No. 1272/2008)

Acute Tox. 4	H302
Skin Corr. 1B	H314
Eye Dam. 1	H318
STOT SE 3	H335
STOT RE 2	H373
Aquatic Acute 1	H400
Aquatic Chronic 1	H410

The product is classified and labelled in accordance with Regulation (EC) No 1272/2008 For explanation of abbreviations see section 16.

2.2. Label elements

Labelling according to regulation (EC) No 1272/2008 Hazard pictograms

No special hazards have to be mentioned.

The product contains no PBT substances. The product contains no vPvB substances. This product does not contain a substance that has endocrine disrupting properties with respect to human. The product does not contain a substance that has endocrine disrupting properties with respect to non-target organisms.

SECTION 3: Composition/information on ingredients ***

3.2. Mixtures

Hazardous ingredients ***

N-(3-Aminopropyl)-N CAS No. EINECS no.	I-dodecylpropane-1,3-di 2372-82-9 219-145-8	amine	
Registration no.	01-2119980592-29		
Concentration	>= 13	< 25	%
Classification (Regu	lation (EC) No. 1272/2008	8)	
	Acute Tox. 3	H301	
	Skin Corr. 1B	H314	
	STOT RE 2	H373	Route of exposure: oral
	Aquatic Acute 1	H400	·
	Aquatic Chronic 1	H410	
Concentration limits	(Regulation (EC) No. 127 Aquatic Acute 1 H4		0

ional Disinfaction Co		-			
				~ ~	Date revised: 26.04.202
R	eplaces	s Versio	on: 1 /	GB	Print date: 26.04.202
Aquatic Chronic	H410		M = 1		
1		261		ma/ka	
	noniun		nato	шу/ку	
	nomun	npiopic	male		
	6				
>= 10		<	25		%
ation (EC) No. 1272/2	2008)				
Acute Tox. 4		H302			Route of exposure: oral
Aquatic Chronic 1		H410			
(Regulation (EC) No.	1272/2	2008)			
Aquatic Acute 1			M = 1	0	
Aquatic Chronic	H410		M = 1		
1		4 4 5 7			
		1.157		mg/kg	
	•				
	8		<u>с</u> г		0/
	2000)	<	6,5		%
	2008)	H303			
Aquatic Chronic 3		H412			
(Pagulation (EC) No.	1070/	2000)			
			5%		
		1.089	• /•	mg/kg	
alative, Dust/Mist		1,5			
alative, Vapors		1,3		mg/l	
colether					
68920-66-1					
500-236-9					
		<	10		%
	2008)				
	l glyco	sides			
68515-73-1					
	~				
	б		6		0/
>= 1		<	3		%
	0000				
ation (EC) No. 1272/2 Eye Dam. 1	2008)	H318			
	Aquatic Chronic 1 I-poly(oxyethyl)amr 94667-33-1 619-057-3 01-2119950327-3 >= 10 ation (EC) No. 1272/ Acute Tox. 4 Skin Corr. 1B Eye Dam. 1 Aquatic Acute 1 Aquatic Chronic 1 (Regulation (EC) No. Aquatic Acute 1 Aquatic Chronic 1 (Regulation (EC) No. Aquatic Chronic 1 1 141-43-5 205-483-3 01-2119486455-2 >= 5 ation (EC) No. 1272/ Acute Tox. 4 Acute Tox. 4 STOT SE 3 Skin Corr. 1B Aquatic Chronic 3 (Regulation (EC) No. STOT SE 3 Skin Corr. 1B Aquatic Chronic 3 (Regulation (EC) No. STOT SE 3 Ialative, Dust/Mist alative, Vapors colether 68920-66-1 500-236-9 01-2119489407-2 >= 2,5 lation (EC) No. 1272/ Skin Irrit. 2 Aquatic Chronic 2 igomers, decyl octy 68515-73-1 500-200-1 01-2119488530-3	Version: Replaces Aquatic Chronic H410 1 I-poly(oxyethyl)ammonium 94667-33-1 619-057-3 01-2119950327-36 >= 10 ation (EC) No. 1272/2008) Acute Tox. 4 Skin Corr. 1B Eye Dam. 1 Aquatic Acute 1 Aquatic Chronic 1 (Regulation (EC) No. 1272/2 Aquatic Acute 1 H400 Aquatic Chronic H410 1 1 141-43-5 205-483-3 01-2119486455-28 >= 5 ation (EC) No. 1272/2008) Acute Tox. 4 Acute Tox. 4 STOT SE 3 Skin Corr. 1B Aquatic Chronic 3 (Regulation (EC) No. 1272/2 STOT SE 3 H335 alative, Dust/Mist alative, Vapors colether 68920-66-1 500-236-9 01-2119489407-26 >= 2,5 ation (EC) No. 1272/2008) Skin Irrit. 2 Aquatic Chronic 2	Aquatic Chronic H410 1 261 H-poly(oxyethyl)ammoniumpropic 94667-33-1 619-057-3 01-2119950327-36 >= 10 <	Version: 2 / GB Replaces Version: 1 / Aquatic Chronic H410 M = 1 1 261 H-poly(oxyethyl)ammoniumpropionate 94667-33-1 619-057-3 01-2119950327-36 >= 10 <	Version: $2 / GB$ Replaces Version: $1 / GB$ Aquatic Chronic H410 M = 1 1 261 mg/kg Jol Colspan="2">Q4667-33-1 619-057-3 01-2119950327-36 >= 10 25 ation (EC) No. 1272/2008) Aquatic Chronic 1 H314 Eye Dam. 1 H318 Aquatic Acute 1 H400 Aquatic Acute 1 H400 M = 10 Aquatic Chronic 1 H410 (Regulation (EC) No. 1272/2008) Aquatic Chronic H410 M = 1 1 1 1.157 mg/kg 141-43-5 205-483-3 01-2119486455-28 > 6,5 atom (EC) No. 1272/2008) Acute Tox. 4 H302 Acute Tox. 4 H312 Acute Tox. 4 H332 STOT SE 3 H335 Skin Corr. 1B H314 Aquatic Chronic 3 H412 (Regulation (EC) No. 1272/2008) STOT SE 3 H335 SKin Corr. 1B H314 Aquatic Chronic 3 H412 (Regulation (EC) No. 1272/2008) STOT SE 3 H335 Skin Irrit. 2 Mg/kg atative, Dust/Mis

rade name: OtoVita Profess	ional Disinfection Concentr	ate			
ubstance number: 71202	Version:	2 / GB			Date revised: 26.04.202
	Replace	s Versi	on: 1 / GB		Print date: 26.04.20
N-Dodecylpropane-1	,3-diamine				
CAS No.	5538-95-4				
EINECS no.	226-902-6				
Registration no.	01-2120862678-37				
Concentration	>= 0,1	<	1	%	
Classification (Regu	lation (EC) No. 1272/2008)				
× 5	Acute Tox. 4	H302			
	Skin Corr. 1A	H314			
	Aquatic Acute 1	H400			
Concentration limits	(Regulation (EC) No. 1272/ Aquatic Acute 1 H400		M = 1		
Dodecylamine					
CAS No.	124-22-1				
EINECS no.	204-690-6				
Registration no.	01-2119484818-20				
Concentration	>= 0,025	<	0,1	%	
	lation (EC) No. 1272/2008)		0,1	70	
Classification (regu	Skin Corr. 1B	H314			
	STOT RE 2	H373			
	Asp. Tox. 1	H304			
	Aquatic Acute 1	H400			
	Aquatic Chronic 1	H410			
Concentration limite	(Regulation (EC) No. 1272/2	2000)			
Concentration innits	Aquatic Acute 1 H400		M = 10		
	Aquatic Chronic H410		M = 10 M = 10		
	1		WI = 10		
Further ingredients					
Ethylene glykol					
CAS No.	107-21-1				
EINECS no.	203-473-3				
Registration no.	01-2119456816-28				
Concentration	>= 1	<	10	%	
Advice: [3]					
	lation (EC) No. 1272/2008)				
、 S	Acute Tox. 4	H302			

SECTION 4: First aid measures

4.1. Description of first aid measures

General information

Remove contaminated, soaked clothing immediately and dispose of safely. Adhere to personal protective measures when giving first aid. Clean body thoroughly (bath, shower). In any case show the physician the Safety Data Sheet.

After inhalation

Ensure supply of fresh air. Remove affected person from danger area. Seek medical advice immediately. **After skin contact**

Trade name: OtoVita Professional Disinfection Concentrate

Substance number: 71202

Version: 2 / GB

Replaces Version: 1 / GB

Date revised: 26.04.2024

Print date: 26.04.2024

Wash off immediately with soap and water. Seek medical advice immediately.

After eye contact

Separate eyelids, wash the eyes thoroughly with water (15 min.). Take medical treatment.

After ingestion

Call in a physician immediately and show him the Safety Data Sheet. Rinse mouth thoroughly with water. Let plenty of water be drunk in small gulps. Do not induce vomiting.

Adhere to personal protective measures when giving first aid

First aider: Pay attention to self-protection!

4.2. Most important symptoms and effects, both acute and delayed

Until now no symptoms known so far.

4.3. Indication of any immediate medical attention and special treatment needed

Hints for the physician / hazards

In the case of swallowing with subsequent vomiting, aspiration of the lungs can occur which can lead to chemical pneumonia or asphyxiation.

SECTION 5: Firefighting measures

5.1. Extinguishing media

Suitable extinguishing media

Recommended: alcohol resistant foam, CO2, powders, water spray/mist, Extinguishing measures to suit surroundings

Non suitable extinguishing media

Full water jet

5.2. Special hazards arising from the substance or mixture

In case of combustion evolution of dangerous gases possible.

5.3. Advice for firefighters

Special protective equipment for fire-fighting

Do not inhale explosion and/or combustion gases. In case of combustion use a suitable breathing apparatus. Wear full protective suit.

Other information

Collect contaminated fire-fighting water separately, must not be discharged into the drains. Fire residues and contaminated fire-fighting water must be disposed of in accordance with the local regulations. Observe manufacturer's / distributor`s instructions.

SECTION 6: Accidental release measures

6.1. Personal precautions, protective equipment and emergency procedures

Use breathing apparatus if exposed to vapours/dust/aerosol. Avoid contact with skin, eyes and clothing. Refer to protective measures listed in Sections 7 and 8.

6.2. Environmental precautions

Prevent spread over a wide area (e.g. by containment or oil barriers). Do not discharge into the drains/surface waters/groundwater. Do not discharge into the subsoil/soil. Retain and dispose of contaminated wash water. In case of gas escape or of entry into waterways, soil or drains, inform the responsible authorities.

Trade name: OtoVita Professional Disinfection Concentrate

Substance number: 71202

Version: 2 / GB

Replaces Version: 1 / GB

Date revised: 26.04.2024

Print date: 26.04.2024

6.3. Methods and material for containment and cleaning up

Pick up with absorbent material. Clean contaminated floors and objects thoroughly with water and detergents, observing environmental regulations. Containers in which spilt substance has been collected must be adequately labelled. Dispose of absorbed material in accordance with the regulations.

6.4. Reference to other sections

Refer to protective measures listed in Sections 7 and 8.

SECTION 7: Handling and storage

7.1. Precautions for safe handling

Advice on safe handling

Avoid formation of aerosols. Perform filling operations only at stations with exhaust ventilation facilities. Provide suitable exhaust ventilation at the processing machines. If workplace limits are exceeded, a respiratory protection approved for this particular job must be worn. Keep container tightly closed.

7.2. Conditions for safe storage, including any incompatibilities

Requirements for storage rooms and vessels

Keep in original packaging, tightly closed. Storage rooms must be properly ventilated. Containers which are opened must be carefully resealed and kept upright to prevent leakage. Provide solvent-resistant and impermeable floor.

Hints on storage assembly

Do not store together with foodstuffs.

Further information on storage conditions

Keep under lock and key or accessible only to specialists or people who are authorized.

SECTION 8: Exposure controls/personal protection

8.1. Control parameters

Exposure limit values

N-(3-Aminopropyl)-N-dodecylp	opane-1,3-	diamine						
List	TRGS 90	0						
Туре	E							
Value	0,05	mg/m³						
Maximum limit value: 8 (II) Pre	gnancy grou	up: Y; Status: 03/18						
Ethylene glykol								
Value	52	mg/m³	20	ppm(V)				
Short term exposure limit	104	mg/m ³	40	ppm(V)				
Skin resorption / sensibilisation	: H							
2-aminoethanol								
List	TRGS 90	0						
Туре	AGW							
Dämpfe und Aerosole								
Value	0,5	mg/m³	0,2	ppm(V)				
Short term exposure limit	7,6	mg/m³	3	ppm(V)				
Skin resorption / sensibilisation	Skin resorption / sensibilisation: H/S; Pregnancy group: Y							
Other information								
		12 24 1						

Contains no substances with occupational exposure limit values.

rade name: OtoVita Professional	Disinfection Concentrate	
Substance number: 71202	Version: 2 / GB	Date revised: 26.04.20
	Replaces Version: 1 / GB	Print date: 26.04.20
-		
Derived No/Minimal Effec	, , , , , , , , , , , , , , , , , , ,	
N-(3-Aminopropyl)-N-dode		
Type of value	Derived No Effect Level (DNEL)	
Reference group	Worker	
Duration of exposure	Long term	
Route of exposure	dermal	
Mode of action	Systemic effects	
Concentration	0,91	mg/kg
Type of value	Derived No Effect Level (DNEL)	
Reference group	Worker	
Duration of exposure	Long term	
Route of exposure	inhalative	
Mode of action	Systemic effects	
Concentration	2,35	mg/m³
Concentration	2,55	mg/m²
Type of value	Derived No Effect Level (DNEL)	
Reference group	Consumer	
Route of exposure	dermal	
Concentration	0,54	mg/kg
Concentration	0,04	iiig/kg
Type of value	Derived No Effect Level (DNEL)	
Reference group	Consumer	
Duration of exposure	Long term	
Route of exposure	inhalative	
Mode of action	Systemic effects	
Concentration	0,7	mg/m³
Conconnution	0,1	
Type of value	Derived No Effect Level (DNEL)	
Reference group	Consumer	
Concentration	0,2	mg/kg
N N-Didecyl-N-methyl-poly	(oxyethyl)ammoniumpropionate	
Type of value	Derived No Effect Level (DNEL)	
Reference group	Industrial use	
Route of exposure	inhalative	
Concentration	0,5	mg/m³
		···· v e····
Type of value	Derived No Effect Level (DNEL)	
Reference group	Industrial use	
Route of exposure	dermal	
Concentration	0,7	mg/kg
Type of value	Derived No Effect Level (DNEL)	
Reference group	Consumer	
	inhalative	
Route of exposure		m a/m3
Concentration	0,12	mg/m³
Type of value	Derived No Effect Level (DNEL)	
Reference group	Consumer	
Route of exposure	dermal	
Concentration	0,35	mg/kg
Type of value	Derived No Effect Level (DNEL)	
Reference group	Consumer	
Route of exposure	oral	

Trade name: OtoVita Professional Disi Substance number: 71202 Concentration Ethylene glykol Type of value Reference group Duration of exposure Route of exposure Mode of action Concentration Type of value Reference group Duration of exposure	Version: 2 / GB Replaces Version: 1 / GB 0,35 Derived No Effect Level (DNEL) Worker Long term inhalative Local effects 35 Derived No Effect Level (DNEL) Worker Long term dermal Systemic effects 106 Derived No Effect Level (DNEL)	Date revised: 26.04.2 Print date: 26.04.2 mg/kg mg/m ³
Concentration Ethylene glykol Type of value Reference group Duration of exposure Route of exposure Mode of action Concentration Type of value Reference group	Replaces Version: 1 / GB 0,35 Derived No Effect Level (DNEL) Worker Long term inhalative Local effects 35 Derived No Effect Level (DNEL) Worker Long term dermal Systemic effects 106 Derived No Effect Level (DNEL)	Print date: 26.04.2 mg/kg mg/m ³
Ethylene glykol Type of value Reference group Duration of exposure Route of exposure Mode of action Concentration Type of value Reference group	0,35 Derived No Effect Level (DNEL) Worker Long term inhalative Local effects 35 Derived No Effect Level (DNEL) Worker Long term dermal Systemic effects 106 Derived No Effect Level (DNEL)	mg/kg mg/m³
Ethylene glykol Type of value Reference group Duration of exposure Route of exposure Mode of action Concentration Type of value Reference group	Derived No Effect Level (DNEL) Worker Long term inhalative Local effects 35 Derived No Effect Level (DNEL) Worker Long term dermal Systemic effects 106 Derived No Effect Level (DNEL)	mg/m³
Type of value Reference group Duration of exposure Route of exposure Mode of action Concentration Type of value Reference group	Worker Long term inhalative Local effects 35 Derived No Effect Level (DNEL) Worker Long term dermal Systemic effects 106 Derived No Effect Level (DNEL)	-
Reference group Duration of exposure Route of exposure Mode of action Concentration Type of value Reference group	Worker Long term inhalative Local effects 35 Derived No Effect Level (DNEL) Worker Long term dermal Systemic effects 106 Derived No Effect Level (DNEL)	-
Duration of exposure Route of exposure Mode of action Concentration Type of value Reference group	Long term inhalative Local effects 35 Derived No Effect Level (DNEL) Worker Long term dermal Systemic effects 106 Derived No Effect Level (DNEL)	-
Route of exposure Mode of action Concentration Type of value Reference group	inhalative Local effects 35 Derived No Effect Level (DNEL) Worker Long term dermal Systemic effects 106 Derived No Effect Level (DNEL)	-
Mode of action Concentration Type of value Reference group	Local effects 35 Derived No Effect Level (DNEL) Worker Long term dermal Systemic effects 106 Derived No Effect Level (DNEL)	-
Concentration Type of value Reference group	35 Derived No Effect Level (DNEL) Worker Long term dermal Systemic effects 106 Derived No Effect Level (DNEL)	-
Type of value Reference group	Derived No Effect Level (DNEL) Worker Long term dermal Systemic effects 106 Derived No Effect Level (DNEL)	-
Reference group	Worker Long term dermal Systemic effects 106 Derived No Effect Level (DNEL)	mg/kg
	Long term dermal Systemic effects 106 Derived No Effect Level (DNEL)	mg/kg
	dermal Systemic effects 106 Derived No Effect Level (DNEL)	mg/kg
	dermal Systemic effects 106 Derived No Effect Level (DNEL)	mg/kg
Route of exposure	Systemic effects 106 Derived No Effect Level (DNEL)	mg/kg
Mode of action	106 Derived No Effect Level (DNEL)	mg/kg
Concentration	Derived No Effect Level (DNEL)	
Type of value		
Reference group	Consumer	
Duration of exposure	Long term	
Route of exposure	inhalative	
Mode of action	Local effects	
Concentration	7	mg/m³
Type of value	Derived No Effect Level (DNEL)	
Reference group	Consumer	
Duration of exposure	Long term	
Route of exposure	dermal	
Mode of action	Systemic effects	
Concentration	53	mg/kg
D-Glucopyranose, oligomers,		
Type of value	Derived No Effect Level (DNEL)	
Reference group	Worker	
Duration of exposure	Long term	
Route of exposure	dermal	
Mode of action	Systemic effects	
Concentration	595000	mg/kg
Type of value	Derived No Effect Level (DNEL)	
Reference group	Worker	
Duration of exposure	Long term	
Route of exposure	inhalative	
Mode of action	Systemic effects	
Concentration	420	mg/m³
Type of value	Derived No Effect Level (DNEL)	
Reference group	Consumer	
Duration of exposure	Long term	
Route of exposure	dermal	
Mode of action	Systemic effects	
Concentration	357000	mg/kg
Type of value	Derived No Effect Level (DNEL)	
Reference group	Consumer	
Duration of exposure	Long term	

	Nation Concentrate	
rade name: OtoVita Professional		
ubstance number: 71202	Version: 2 / GB	Date revised: 26.04.2024
	Replaces Version: 1 / GB	Print date: 26.04.202
Route of exposure	oral	
Mode of action	Systemic effects	
Concentration	35,7	mg/kg
Type of value	Derived No Effect Level (DNEL)	
Reference group	Consumer	
Duration of exposure	Long term	
Route of exposure	inhalative	
Mode of action	Systemic effects	
Concentration	124	mg/m³
2 emine ether el		
2-aminoethanol Type of value	Derived No Effect Level (DNEL)	
Reference group	Worker	
Duration of exposure	Long term	
Route of exposure	inhalative	
Mode of action	Local effects	
Concentration	0,51	mg/m³
Turner (and a		-
Type of value	Derived No Effect Level (DNEL)	
Reference group	Worker	
Duration of exposure	Acute	
Route of exposure	dermal	
Mode of action Concentration	Systemic effects 3	mg/kg/d
Type of value	Derived No Effect Level (DNEL)	
Reference group	Consumer	
Duration of exposure	Long term	
Route of exposure	inhalative	
Mode of action	Local effects	
Concentration	0,28	mg/m³
Type of value	Derived No Effect Level (DNEL)	
Reference group	Consumer	
Duration of exposure	Long term	
Route of exposure	dermal	
Mode of action	Systemic effects	
Concentration	1,5	mg/kg/d
Type of value	Derived No Effect Level (DNEL)	
Reference group	Consumer	
Duration of exposure	Long term	
Route of exposure	oral	
Mode of action	Systemic effects	
Concentration	1,5	mg/kg/d
Type of value	Derived No Effect Level (DNEL)	
Reference group	Worker	
Duration of exposure	Long term	
Route of exposure	inhalative	
Mode of action	Systemic effects	
Concentration	1	mg/m³
Type of value	Derived No Effect Level (DNEL)	

Trade name: OtoVita Professional	Disinfection Concentrate	
Substance number: 71202	Version: 2 / GB	Date revised: 26.04.2024
	Replaces Version: 1 / GB	Print date: 26.04.2024
Duration of exposure	Long term	
Route of exposure	inhalative	
Mode of action	Systemic effects	
Concentration	0,18	mg/m³
Predicted No Effect Conce	entration (PNEC)	
N-(3-Aminopropyl)-N-dodeo Type of value	. ,	
Туре	Freshwater	
Concentration	0,001	mg/l
Type of value	PNEC	
Туре	Soil	
Concentration	45,34	mg/kg
Type of value	PNEC	
Туре	Marine sediment	
Concentration	0,85	mg/kg
Type of value	PNEC	
Туре	Freshwater sediment	
Concentration	8,5	mg/kg
Type of value	PNEC	
Туре	Sewage treatment plant (STP)	
Concentration	1,33	mg/l
Type of value	PNEC	
Туре	Water (intermittent release)	
Concentration	0	mg/l
Type of value	PNEC	
Туре	Marine	
Concentration	0	mg/l
N.N-Didecvl-N-methyl-poly(oxyethyl)ammoniumpropionate	
Type of value	PNEC	
Туре	Freshwater	
Concentration	0,001	mg/l
Type of value	PNEC	
Туре	Sewage treatment plant (STP)	
Concentration	0,118	mg/l
Type of value	PNEC	
Туре	Freshwater sediment	
Concentration	5,3	mg/kg
Type of value	PNEC	
Туре	Soil	
Concentration	2,83	mg/kg
D-Glucopyranose, oligome	rs, decyl octyl glycosides	
Type of value	PNEC	
Туре	Freshwater	

Trade name: OtoVita Professional	Disinfection Concentrate	
Substance number: 71202	Version: 2 / GB	Date revised: 26.04.2024
	Replaces Version: 1 / GB	Print date: 26.04.2024
Concentration	0,176	mg/l
Type of value	PNEC	
Туре	Saltwater	
Concentration	0,0176	mg/l
Type of value	PNEC	
Туре	Water (intermittent release)	
Concentration	0,27	mg/l
Type of value	PNEC	
Туре	Sewage treatment plant (STP)	
Concentration	560	mg/l
Type of value	PNEC	
Туре	Sediment	
Concentration	1,5616	mg/kg
Type of value	PNEC	
Туре	Marine sediment	
Concentration	0,152	mg/kg
Type of value	PNEC	
Туре	Soil	
Concentration	0,654	mg/kg
Type of value	PNEC	
Туре	Secondary poisoning	
Concentration	111,11	mg/kg
2-aminoethanol		
Type of value	PNEC	
Туре	Freshwater	
Conditions	Short term	
Concentration	0,085	mg/l
Type of value	PNEC	
Type	Saltwater	
Conditions Concentration	Short term 0,009	mg/l
Concentration	0,009	mgn
Type of value	PNEC	
Туре	Sewage treatment plant (STP)	
Conditions Concentration	Short term 100	mal
Concentration	100	mg/l
Type of value	PNEC	
Type Conditions	Freshwater sediment	
Conditions	Short term 0,434	mg/kg
		5 5
Type of value	PNEC Morino podiment	
Type Conditions	Marine sediment Short term	
Concentration	0,043	mg/kg
	_,	5 5

Dreve	

Type of value	PNEC	
	Replaces Version: 1 / GB	Print date: 26.04.2024
Substance number: 71202	Version: 2 / GB	Date revised: 26.04.2024
Trade name: OtoVita Professional Disin	fection Concentrate	

Type of value	PNEC	
Туре	Soil	
Conditions	Short term	
Concentration	0,037	mg/kg

8.2. Exposure controls

General protective and hygiene measures

Hold emergency shower available. Hold eye wash fountain available. Do not inhale gases/vapours/aerosols. Avoid contact with skin and eyes. Do not eat, drink or smoke during work time. Storage of foodstuffs in work rooms is forbidden. Wash hands before breaks and after work. Clean skin thoroughly after work; apply skin cream.

Respiratory protection

Not necessary, but do not inhale vapours. Use suitable respiratory protective device in case of insufficient ventilation

Hand protection

There is no one glove material or combination of materials that will give unlimited resistance to any individual or combination of chemicals.

The instructions and information provided by the glove manufacturer on use, storage, maintenance and replacement must be followed.

Gloves should be replaced regularly and if there is any sign of damage to the glove material. Appropriate Material nitrile

Hand protection must comply with EN 374.

Eye protection

Safety glasses

Body protection

Clothing as usual in the chemical industry.

SECTION 9: Physical and chemical properties

9.1. Information on basic physical and chemical properties

liquid	
blue	
of lemon	
not determined	
not determined	
ing point and boiling range	
100	°C
not determined	
e limits	
not determined	
> 65	°C
closed cup	
	blue of lemon not determined not determined ling point and boiling range 100 not determined e limits not determined > 65

Safety data sheet in accordance	Dreve	
Trade name: OtoVita Professional	Disinfection Concentrate	
Substance number: 71202	Version: 2 / GB	Date revised: 26.04.202
	Replaces Version: 1 / G	B Print date: 26.04.202
Value	> 320	°C
Decomposition temperate	ure	
Remarks	not determined	
pH value		
Remarks	not determined	
Viscosity		
Remarks	not determined	
Solubility(ies)		
Remarks	not determined	
Partition coefficient n-oct	tanol/water (log value)	
Remarks	not determined	
Vapour pressure		
Value	23	hPa
Density and/or relative de	ensity	
Value	1,01	g/cm ³
Temperature	20 °C	
Relative vapour density		
Remarks	not determined	
9.2. Other information		
Odour threshold		
Remarks	not determined	
Evaporation rate (ether =	1) :	
Remarks	not determined	
Solubility in water		
Remarks	miscible in all proportions	
Explosive properties		
evaluation	no	
Oxidising properties		
Remarks	not determined	
Other information		
None known		

SECTION 10: Stability and reactivity

10.1. Reactivity

No hazardous reactions when stored and handled according to prescribed instructions.

10.2. Chemical stability

No hazardous reactions known.

10.3. Possibility of hazardous reactions No hazardous reactions known.

10.4. Conditions to avoid

No hazardous reactions known.

10.5. Incompatible materials

Trade name: OtoVita Profession	Disinfaction Concontrato		
			Date revised: 26.04.202
Substance number: 71202	Version: 2 / GB		
	Replaces Versi	on: 1 / GB	Print date: 26.04.202
None known			
10.6. Hazardous decomp	osition products		
Toxic gases/vapours, In	-		
SE	CTION 11: Toxicolog	ical informatior	1
11.1 Information on haza	rd classes as defined in	Regulation (EC) N	o 1272/2008
Acute oral toxicity			
ATE	1.495,10	mg/kg	
Method	51 calculated value (Regula	tion (EC) No. 1272/200	8)
Acute oral toxicity (Cor			0)
• •	decylpropane-1,3-diamine		
Species	rat		
LD50	261	mg/kg	
Method	OECD 401		
N,N-Didecyl-N-methyl-po Species	oly(oxyethyl)ammoniumpropi rat	onate	
LD50	1157	mg/kg	
Method	FDA guideline	5.5	
Ethylene glykol			
Species	rat 7710	m a/lea	
LD50	7712	mg/kg	
Fatty alcohol polyglycol Species	rat		
LD50	> 2000	mg/kg	
Method	OECD 401		
Dodecylamine			
Species LD50	rat > 2000	malka	
Method	OECD 401	mg/kg	
D-Glucopyranose, oligo	mers, decyl octyl glycosides		
Species	rat		
LD50	> 2000	mg/kg	
N-Dodecylpropane-1,3-d		malka	
LD50 2-aminoethanol	300	mg/kg	
Species	rat		
LD50	1089	mg/kg	
Method	OECD 401		
Acute dermal toxicity			
Remarks	Based on available data,	the classification criter	ia are not met.
Acute dermal toxicity (Components)		
	oly(oxyethyl)ammoniumpropi	onate	
Species	rabbit	~~~~//~~	
LD50 Remarks	3342 Test conducted with a sir	mg/kg nilar formulation.	
Ethylene glykol			
Species	mouse		

	D			
rade name: OtoVita Professional	Disinfectio			
Substance number: 71202		Versio	n: 2 / GB	Date revised: 26.04.20
		Replac	es Version: 1 / GB	Print date: 26.04.20
LD50	>	3500		mg/kg
Fatty alcohol polyglycolet	her			5 5
Species	rabbit			
LD50	>	2000		mg/kg
Method	OECD	402		
Dodecylamine				
Species LD50	rat	2000		malka
Method	> OECD			mg/kg
Remarks			with a similar formul	ation
D-Glucopyranose, oligome				
Species	rabbit	octyr gryt	031063	
LD50	>	2000		mg/kg
Method	OECD			5.5
2-aminoethanol				
Species	rabbit			
LD50	-	2504		mg/kg
Acute inhalational toxicit	v			
ATE	,	25,9666		mg/l
Administration/Form	Vapors			
Method			(Regulation (EC) N	o. 1272/2008)
ATE	>	20		mg/l
Administration/Form	Dust/M			
Method			(Regulation (EC) N	
Remarks			ble data, the classifi	cation criteria are not met.
Acute inhalative toxicity	(Compon	ients)		
Fatty alcohol polyglycolet	her			
Species	rat			
LC50	>	1600		mg/m³
Duration of exposure	.,	4	h	
Administration/Form	Vapors			
Method	OECD	403		
2-aminoethanol				
Species LC50	rat	1 2		ma/l
Duration of exposure	>	1,3 6	h	mg/l
Administration/Form	Vapors			
Skin corrosion/irritation	, apon	-		
	oorroo	ivo		
evaluation Remarks	corrosi The cla		n criteria are met.	
Skin corrosion/irritation (• •	-		
N-(3-Aminopropyl)-N-dode		ne-1,3-dia	mine	
Species	rabbit			
evaluation Method	corrosi OECD			
			mino	
N-(3-Aminopropyl)-N-dode Species	cylpropar Humar		mine	
evaluation	corrosi			
N,N-Didecyl-N-methyl-poly			Impropionato	
Species	rabbit	jannionil	mpiopioriate	
evaluation	corrosi	ive		
Method	OECD			

ade name: OtoVita Professional	Disinfection Concentrate	
bstance number: 71202	Version: 2 / GB	Date revised: 26.04.202
	Replaces Version: 1 / GB	Print date: 26.04.202
Fatty alcohol polyglycolet	har	
Species	rabbit	
Duration of exposure	4 h	
evaluation	irritant	
Method	OECD 404	
Dodecylamine Species	rabbit	
evaluation	corrosive	
Method	OECD 404	
2-aminoethanol		
Species	rabbit	
evaluation	corrosive	
Method	OECD 404	
Serious eye damage/irrit		
evaluation Remarks	corrosive The classification criteria are met.	
Serious eye damage/irrit	ation (Components)	
	y(oxyethyl)ammoniumpropionate	
Species	rabbit	
evaluation Method	corrosive OECD 405	
	ers, decyl octyl glycosides	
Species	rabbit	
evaluation	corrosive	
Method	OECD 405	
N-(3-Aminopropyl)-N-dode evaluation	ecylpropane-1,3-diamine corrosive	
Dodecylamine		
evaluation	corrosive	
2-aminoethanol		
Species	rabbit	
evaluation Method	corrosive OECD 405	
	0ECD 405	
Sensitization	Deced on evolution date the electricities evi	torio are not mot
Remarks	Based on available data, the classification cri	tena are not met.
Subacute, subchronic, c	-	
Remarks	not determined	
Mutagenicity		
Remarks	Based on available data, the classification cri	teria are not met.
Reproductive toxicity		
Remarks	Based on available data, the classification cri	teria are not met.
Carcinogenicity		
Remarks	Based on available data, the classification cri	teria are not met.
Specific Target Organ To	oxicity (STOT)	
Single exposure		
Remarks	The classification criteria are met.	
evaluation	May cause respiratory irritation.	
Repeated exposure	-	
Remarks	The classification criteria are met.	

	ce with regulation (EC) No 1907/2006	Dreve
Frade name: OtoVita Professiona	al Disinfection Concentrate	
Substance number: 71202	Version: 2 / GB	Date revised: 26.04.202
	Replaces Version: 1 / GB	Print date: 26.04.202
evaluation	May cause damage to organs through pro	longed or repeated exposure
Specific Target Organ	Toxicity (STOT) (Components)	c
	decylpropane-1,3-diamine	
Repeated exposure		
evaluation	May cause damage to organs through pro	longed or repeated exposure
	Route of exposure oral	
Species	rat	
NOAEL	4 mg/kg	
Dodecylamine		
evaluation	May cause damage to organs through pro Route of exposure oral	longed or repeated exposure
Species	rat	
NOAEL	3,25 mg/kg	
Remarks	Test conducted with a similar formulation.	
2-aminoethanol		
Single exposure	Mov course receivatory initation	
evaluation	May cause respiratory irritation. Route of exposure inhalative	
Achiration borard		
Aspiration hazard	the elevent entropy with the end wet wet	
Daseu uli avaliable uala	a, the classification criteria are not met.	
Endocrine disrupting p	hazards roperties with respect to humans ontain a substance that has endocrine disrupting	properties with respect to
Endocrine disrupting p The product does not co humans. Experience in practice	roperties with respect to humans ontain a substance that has endocrine disrupting	properties with respect to
Endocrine disrupting p The product does not co humans. Experience in practice Inhalation may lead to ir	roperties with respect to humans	properties with respect to
 Endocrine disrupting p The product does not concern humans. Experience in practice Inhalation may lead to in Other information 	roperties with respect to humans ontain a substance that has endocrine disrupting rritation of the respiratory tract.	properties with respect to
Endocrine disrupting p The product does not co humans. Experience in practice Inhalation may lead to ir	roperties with respect to humans ontain a substance that has endocrine disrupting rritation of the respiratory tract.	properties with respect to
 Endocrine disrupting p The product does not concern. Experience in practice Inhalation may lead to in Other information No toxicological data are 	roperties with respect to humans ontain a substance that has endocrine disrupting ritation of the respiratory tract. e available.	· · ·
Endocrine disrupting p The product does not con- humans. Experience in practice Inhalation may lead to in Other information No toxicological data are	roperties with respect to humans ontain a substance that has endocrine disrupting rritation of the respiratory tract.	
Endocrine disrupting p The product does not con humans. Experience in practice Inhalation may lead to in Other information No toxicological data are S 12.1. Toxicity	roperties with respect to humans ontain a substance that has endocrine disrupting ritation of the respiratory tract. e available.	
Endocrine disrupting p The product does not con humans. Experience in practice Inhalation may lead to in Other information No toxicological data are S 12.1. Toxicity General information	roperties with respect to humans ontain a substance that has endocrine disrupting ritation of the respiratory tract. e available.	
Endocrine disrupting p The product does not con humans. Experience in practice Inhalation may lead to in Other information No toxicological data are S 12.1. Toxicity General information not determined	roperties with respect to humans ontain a substance that has endocrine disrupting rritation of the respiratory tract. e available. ECTION 12: Ecological informati	
Endocrine disrupting p The product does not con humans. Experience in practice Inhalation may lead to in Other information No toxicological data are S 12.1. Toxicity General information	roperties with respect to humans ontain a substance that has endocrine disrupting rritation of the respiratory tract. e available. ECTION 12: Ecological informati	
Endocrine disrupting p The product does not conhumans. Experience in practice Inhalation may lead to in Other information No toxicological data are S 12.1. Toxicity General information not determined Fish toxicity (Compone N-(3-Aminopropyl)-N-doe	ents) decylpropane-1,3-diamine	
Endocrine disrupting p The product does not conhumans. Experience in practice Inhalation may lead to in Other information No toxicological data are S 12.1. Toxicity General information not determined Fish toxicity (Compone N-(3-Aminopropyl)-N-doo Species	ents) decylpropane-1,3-diamine zebra fish (Brachydanio rerio)	ion
Endocrine disrupting p The product does not conhumans. Experience in practice Inhalation may lead to in Other information No toxicological data are S 12.1. Toxicity General information not determined Fish toxicity (Compone N-(3-Aminopropyl)-N-doe Species LC50	ents) decylpropane-1,3-diamine zebra fish (Brachydanio rerio) 0,431 mg	ion
Endocrine disrupting p The product does not conhumans. Experience in practice Inhalation may lead to in Other information No toxicological data are No toxicological data are S 12.1. Toxicity General information not determined Fish toxicity (Compone N-(3-Aminopropyl)-N-doe Species LC50 Method	ents) decylpropane-1,3-diamine zebra fish (Brachydanio rerio) 0,431 mg. OECD 203	ion
Endocrine disrupting p The product does not con- humans. Experience in practice Inhalation may lead to in Other information No toxicological data are S 12.1. Toxicity General information not determined Fish toxicity (Compone N-(3-Aminopropyl)-N-doe Species LC50 Method N,N-Didecyl-N-methyl-po	ents) decylpropane-1,3-diamine zebra fish (Brachydanio rerio) 0,431 mg. OECD 203 oby(oxyethyl)ammoniumpropionate	ion
Endocrine disrupting p The product does not conhumans. Experience in practice Inhalation may lead to in Other information No toxicological data are S 12.1. Toxicity General information not determined Fish toxicity (Compone N-(3-Aminopropyl)-N-dow Species LC50 Method N,N-Didecyl-N-methyl-pot Species	ents) decylpropane-1,3-diamine zebra fish (Brachydanio rerio) 0,431 mg. OECD 203 bly(oxyethyl)ammoniumpropionate Bluegill (Lepomis macrochirus)	ion
Endocrine disrupting p The product does not con- humans. Experience in practice Inhalation may lead to in Other information No toxicological data are S 12.1. Toxicity General information not determined Fish toxicity (Compone N-(3-Aminopropyl)-N-doe Species LC50 Method N,N-Didecyl-N-methyl-pot Species LC50	ents) decylpropane-1,3-diamine zebra fish (Brachydanio rerio) 0,431 mg. OECD 203 oby(oxyethyl)ammoniumpropionate	ion
Endocrine disrupting p The product does not conhumans. Experience in practice Inhalation may lead to in Other information No toxicological data and No toxicological data and S 12.1. Toxicity General information not determined Fish toxicity (Compone N-(3-Aminopropyl)-N-doo Species LC50 Method N,N-Didecyl-N-methyl-po Species LC50 Duration of exposure	ents) decylpropane-1,3-diamine zebra fish (Brachydanio rerio) 0,431 mg. OECD 203 Diy(oxyethyl)ammoniumpropionate Bluegill (Lepomis macrochirus) 0,52 mg. 96 h	ion
Endocrine disrupting p The product does not conhumans. Experience in practice Inhalation may lead to in Other information No toxicological data and No toxicological data and S 12.1. Toxicity General information not determined Fish toxicity (Compone N-(3-Aminopropyl)-N-doo Species LC50 Method N,N-Didecyl-N-methyl-po Species LC50 Duration of exposure	ents) decylpropane-1,3-diamine zebra fish (Brachydanio rerio) 0,431 mg. OECD 203 bly(oxyethyl)ammoniumpropionate Bluegill (Lepomis macrochirus) 0,52 mg. 96 h	ion
The product does not con- humans. Experience in practice Inhalation may lead to in Other information No toxicological data and No toxicological data and S 12.1. Toxicity General information not determined Fish toxicity (Compone N-(3-Aminopropyl)-N-doe Species LC50 Method N,N-Didecyl-N-methyl-poo Species LC50 Duration of exposure N,N-Didecyl-N-methyl-poo	ents) decylpropane-1,3-diamine zebra fish (Brachydanio rerio) 0,431 mg. OECD 203 Diy(oxyethyl)ammoniumpropionate Bluegill (Lepomis macrochirus) 0,52 mg. 96 h	ion //
Endocrine disrupting p The product does not con- humans. Experience in practice Inhalation may lead to in Other information No toxicological data and S 12.1. Toxicity General information not determined Fish toxicity (Compone N-(3-Aminopropyl)-N-doe Species LC50 Method N,N-Didecyl-N-methyl-por Species LC50 Duration of exposure N,N-Didecyl-N-methyl-por Species	ents) decylpropane-1,3-diamine zebra fish (Brachydanio rerio) 0,431 mg. OECD 203 bluegill (Lepomis macrochirus) 0,52 mg. 96 h bly(oxyethyl)ammoniumpropionate zebra fish (Brachydanio rerio)	ion //

Safety data sheet in accordance wi	th regulation (EC)) No 1907/2006		Dreve
Trade name: OtoVita Professional D	sinfection Concent	rate		
Substance number: 71202	Version	n: 2 / GB		Date revised: 26.04.2024
	Replace	es Version: 1 / GB		Print date: 26.04.2024
Remarks	Test conducted w	vith a similar formu	llation.	
Ethylene glykol				
Species		(Pimephales prom	nelas)	
LC50	> 53000 96	h	mg/l	
Duration of exposure	90	h		
Ethylene glykol NOEC	> 40		mg/l	
Duration of exposure	28	d		
Remarks	Test conducted w	vith a similar formu	lation.	
Fatty alcohol polyglycolethe				
Species LC50	zebra fish (Brach	ydanio rerio)	~~~~~/l	
Duration of exposure	108 96	h	mg/l	
Fatty alcohol polyglycolethe				
Species		(Pimephales prom	nelas)	
EC20	0,0314		mg/l	
Duration of exposure	30	d		
Dodecylamine				
Species LC50	zebra fish (Brach 0,84	ydanio rerio)	mg/l	
Duration of exposure	96	h	ilig/i	
Method	OECD 203			
Remarks		vith a similar formu	llation.	
D-Glucopyranose, oligomers				
Species LC50	zebra fish (Brach 100	iyuanio renoj	mg/l	
Duration of exposure	96	h		
Method	ISO 7346			
D-Glucopyranose, oligomers				
Species NOEC	zebra fish (Brach	ydanio rerio)	ma/l	
Duration of exposure	1,8 28	d	mg/l	
Method	OECD 204	-		
2-aminoethanol				
Species	carp (Cyprinus ca	arpio)		
LC50 Duration of exposure	349 96	h	mg/l	
Method		No. 440/2008, Ann	nex, C.1	
2-aminoethanol	5 ()	,		
Species	Oryzias latipes			
NOEC	1,24		mg/l	
Duration of exposure Method	41 OECD 210	d		
Daphnia toxicity (Compone				
	-			
N-(3-Aminopropyl)-N-dodecy Species	Daphnia magna	nine		
EC50	0,077		mg/l	
Duration of exposure	48	h	-	
Method	OECD 202			
N-(3-Aminopropyl)-N-dodecy		mine		
Species NOEC	Daphnia magna 0,024		mg/l	
Duration of exposure	21	d		

rade name: OtoVita Professional D	isinfection Concent	rate		
ubstance number: 71202	Version: 2 / GB Replaces Version: 1 / GB			Date revised: 26.04.202
				Print date: 26.04.202
Method	OECD 211			
N,N-Didecyl-N-methyl-poly(mpropionate		
Species	Daphnia magna	in propronato		
LC50	0,07		mg/l	
Duration of exposure	48	h	-	
Method	OECD 202			
N,N-Didecyl-N-methyl-poly(mpropionate		
Species	Daphnia magna			
NOEC	0,01		mg/l	
Duration of exposure	21	d		
Method	OECD 211	the station france lat	•	
Remarks	lest conducted w	vith a similar formulat	ion.	
Ethylene glykol	D 1 1			
Species	Daphnia magna			
EC50	> 100		mg/l	
Duration of exposure	48	h		
Method	OECD 202			
Fatty alcohol polyglycolethe				
Species	Daphnia magna			
EC50	51		mg/l	
Duration of exposure	48	h		
Fatty alcohol polyglycolethe				
Species	Daphnia magna		//	
EC20	0,0724		mg/l	
Duration of exposure	21	d		
Dodecylamine	D			
Species	Daphnia magna		/I	
EC50	0,32	h	mg/l	
Duration of exposure Method	48 OECD 202	h		
Remarks		vith a similar formulat	ion	
			1011.	
Dodecylamine	Donhnia magna			
Species NOEC	Daphnia magna		ma/l	
Duration of exposure	0,013 21	d	mg/l	
Method	OECD 211	u		
Remarks		vith a similar formulat	ion.	
D-Glucopyranose, oligomer				
Species	Daphnia magna			
EC50	> 100		mg/l	
Method	OECD 202		y '	
D-Glucopyranose, oligomer		osides		
Species	Daphnia magna			
NOEC	1,76		mg/l	
Duration of exposure	21	d	y '	
Method	OECD 202	-		
2-aminoethanol				
Species	Daphnia magna			
EC50	27,04		mg/l	
Duration of exposure	48	h		
Method	-	No. 440/2008, Annex	, C.2	
2-aminoethanol			,	
Species	Daphnia magna			
NOEC			mg/l	

Safety data sheet in accordance w	rith regulation (E	C) No 1907/2006		Dreve
Trade name: OtoVita Professional D	Disinfection Conce	ntrate		
Substance number: 71202	mber: 71202 Version: 2 / GB			
	Repla	ces Version: 1 / GE	3	Print date: 26.04.2024
Duration of exposure	21	d		
Method	OECD 202			
Algae toxicity (Componen	2			
N-(3-Aminopropyl)-N-dodec Species	Scenedesmus s			
EC10	0,012		mg/l	
Duration of exposure	72	h		
Method	OECD 201			
N-(3-Aminopropyl)-N-dodec Species		iella subcapitata		
ErC50	0,015		mg/l	
Duration of exposure	72	h	-	
Method	OECD 201	• •		
N,N-Didecyl-N-methyl-poly(Species	Desmodesmus			
ErC50	0,34	Subspicatus	mg/l	
Duration of exposure Method	72 OECD 201	h	-	
Fatty alcohol polyglycoleth				
Species		iella subcapitata		
EC50	> 10		mg/l	
Duration of exposure	72	h		
Fatty alcohol polyglycolethe Species	er Scenedesmus s	subspicatus		
EC20	0,195	abopicatão	mg/l	
Duration of exposure	72	h		
Dodecylamine	Deemedeemus	ou honiootu o		
Species EC50	Desmodesmus 0,16	subspicatus	mg/l	
Duration of exposure	72	h	g/	
Method	OECD 201		1.0	
Remarks		with a similar form	ulation.	
D-Glucopyranose, oligomer Species	Scenedesmus s			
EC50	27,22		mg/l	
Duration of exposure Method	72 DIN 38412 / Pa	h rt 9		
Ethylene glykol	Dirt 0041271 u			
Species	Pseudokirchner	iella subcapitata		
NOEC	> 100		mg/l	
Duration of exposure Method	72 OECD 201	h		
Remarks		with a similar form	ulation.	
2-aminoethanol				
Species		iella subcapitata	0	
EC50 Duration of exposure	2,8 72	h	mg/l	
Method	OECD 201			
Bacteria toxicity (Compon	ents)			
N-(3-Aminopropyl)-N-dodec Species	ylpropane-1,3-dia activated sludge			
EC50	18	,	mg/l	
Duration of exposure	3	h	-	

Safety data sheet in accordance	e with regulation (E0	C) No 1907/2	006	Dreve
Trade name: OtoVita Professiona	Disinfection Concer	ntrate		
Substance number: 71202	Versio	on: 2 / GB		Date revised: 26.04.2024
	Repla	ces Version:	1 / GB	Print date: 26.04.2024
Method	OECD 209			
Ethylene glykol	OECD 209			
Species	activated sludge	9		
EC20	> 1995		mg/l	
Duration of exposure	30	min		
Dodecylamine				
Species	activated sludge	9	"	
EC50	14	L.	mg/l	
Duration of exposure Method	3 OECD 209	h		
Remarks	Test conducted	with a simila	r formulation	
D-Glucopyranose, oligon			Torritalation	
Species	Pseudomonas p			
ECO	> 100	Juliuu	mg/l	
Duration of exposure	6	h	5	
N,N-Didecyl-N-methyl-po	lv(oxvethvl)ammoni	iumpropiona	ite	
Species	activated sludge			
EC50	24		mg/l	
Duration of exposure	3	h	-	
Method	OECD 209			
2-aminoethanol				
Species	activated sludge	e		
EC10	> 1000		mg/l	
Duration of exposure	30	min		
Method	OECD 209			
2.2. Persistence and deg	radability			
General information				
not determined				
Biodegradability (Comp	onents)			
D-Glucopyranose, oligon evaluation			rding to OECD criter	ia)
N,N-Didecyl-N-methyl-po		•	•	
Value	34	umpropiona	%	
Duration of test	28	d	70	
evaluation	not readily degr	.		
Method	OECD 301 B			
Ethylene glykol				
Value	90	to 1	00 %	
Duration of test	10	d		
evaluation		adable (acco	rding to OECD criter	ia)
Method	OECD 301 A			
2-aminoethanol				
Value	> 90		%	
Duration of test	28	d		• 、
evaluation		adable (acco	rding to OECD criter	ia)
Ready degradability (Co	omponents)			
N-(3-Aminopropyl)-N-dod		amine		
Value	79		%	
Duration of test	28	d		
Method	Sewage water s	•		
N-(3-Aminopropyl)-N-dod		amine	<u>.</u>	
Value	68		%	

		(EC) No 1907/2		Dreve
Trade name: OtoVita Professional	Disinfection Cond	centrate		
Substance number: 71202	Vers	sion: 2 / GB		Date revised: 26.04.202
	Replaces Version: 1 / GB			Print date: 26.04.2024
Duration of test	28	d		
Fatty alcohol polyglycolet	her			
Dodecylamine				
Value Duration of test	60 28	A	%	
Method	28 Sewage wate	d er systeme		
12.3. Bioaccumulative pote	-	,		
General information				
not determined				
Partition coefficient n-oc				
Remarks	not determ			
Octanol/water partition c	oefficient (log l	Pow) (Compo	nents)	
N-(3-Aminopropyl)-N-dode log Pow		diamine 46		
Ethylene glykol		-		
log Pow		,36		
Source	ECHA			
Dodecylamine log Pow	۸ ۲	33		
Temperature	4,、 25			
2-aminoethanol		-		
log Pow	-2,			
Temperature Method	25 0ECD 107			
12.4. Mobility in soil				
General information				
not determined				
12.5. Results of PBT and vi	PvB assessme	ent		
General information				
not determined				
Results of PBT and vPvB				
The product contains no F The product contains no v				
12.6 Endocrine disrupting	properties			
Endocrine disrupting pro The product does not cont target organisms.	-	-		perties with respect to non-
12.7. Other adverse effects				
General information				
not determined				
General information / eco	oloav			
Do not allow to enter soil,	•••	ste water canal.	Avoid release inte	o the atmosphere.

Trade name: OtoVita Professional Disinfection Concentrate

Substance number: 71202

Version: 2 / GB

Replaces Version: 1 / GB

Date revised: 26.04.2024

Print date: 26.04.2024

13.1. Waste treatment methods

Disposal recommendations for the product

Must not be disposed together with household garbage.

Allocation of a waste code number, according to the European Waste Catalogue (EWC), should be carried out in agreement with the regional waste disposal company.

Disposal recommendations for packaging

Packaging that cannot be cleaned should be disposed off in agreement with the regional waste disposal company.

SECTION 14: Transport information ***						
	Land transport ADR/RID	Marine transport IMDG/GGVSee ***	Air transport ICAO/IATA			
14.1. UN number or ID number	1903	1903	1903			
14.2. UN proper shipping name	DISINFECTANT, LIQUID, CORROSIVE, N.O.S. (N-(3- Aminopropyl)-N-dodecylpropane- 1,3-diamine, N,N-Didecyl-N- methyl- poly(oxyethyl)ammoniumpropion ate)	DISINFECTANT, LIQUID, CORROSIVE, N.O.S. (N-(3- Aminopropyl)-N-dodecylpropane- 1,3-diamine, N,N-Didecyl-N- methyl- poly(oxyethyl)ammoniumpropion ate)	DISINFECTANT, LIQUID, CORROSIVE, N.O.S. (N-(3- Aminopropyl)-N-dodecylpropane- 1,3-diamine, N,N-Didecyl-N- methyl- poly(oxyethyl)ammoniumpropion ate)			
14.3. Transport hazard class(es)	8	8	8			
Label	B	A A	B			
14.4. Packing group	II	II	Ι			
Limited Quantity	11	11				
Transport category	2					
14.5. Environmental hazards	ENVIRONMENTALLY HAZARDOUS	Marine Pollutant	ENVIRONMENTALLY HAZARDOUS			
Tunnel restriction code	E					

SECTION 15: Regulatory information

Trade name: OtoVita Professional Disinfection Concentrate

Substance number: 71202

Version: 2 / GB

Replaces Version: 1 / GB

Date revised: 26.04.2024

Print date: 26.04.2024

15.2. Chemical safety assessment

For this preparation a chemical safety assessment has not been carried out.

SECTION 16: Other information

Classification and procedure used to derive the classification for mixtures according to Regulation (EC) 1272/2008 [CLP]:

Classification (Regulation (EC) No. 1272/2008)

Classification (Regula	tion (EC) No. 1272/2008)						
	Acute Tox. 4		Calculation method				
	Skin Corr. 1B	H314	Calculation method				
	Eye Dam. 1	H318	Calculation method				
	STOT SE 3	H335	Calculation method				
	STOT RE 2	H373	Calculation method				
	Aquatic Acute 1	H400	Calculation method				
	Aquatic Chronic 1	H410	Calculation method				
Hazard statements listed in Chapter 2/3							
H301	Toxic if swallowed	l.					
H302	Harmful if swallow	Harmful if swallowed.					
H304	May be fatal if swa	May be fatal if swallowed and enters airways.					
H312	Harmful in contac	Harmful in contact with skin.					
H314	Causes severe sk	Causes severe skin burns and eye damage.					
H315	Causes skin irritation.						
H318	Causes serious eye damage.						
H332	Harmful if inhaled	Harmful if inhaled.					
H335	May cause respira	May cause respiratory irritation.					
H373	May cause damag	May cause damage to organs through prolonged or repeated exposure.					
H400		Very toxic to aquatic life.					
H410		Very toxic to aquatic life with long lasting effects.					
H411		Toxic to aquatic life with long lasting effects.					
H412	Harmful to aquation	Harmful to aquatic life with long lasting effects.					
CLP categories listed in Chapter 2/3							
Acute Tox. 3	Acute toxicity, Cat	tegory 3					
Acute Tox. 4	Acute toxicity, Ca	Acute toxicity, Category 4					
Aquatic Acute 1	Hazardous to the aquatic environment, acute, Category 1						
Aquatic Chronic 1	Hazardous to the aquatic environment, chronic, Category 1						
Aquatic Chronic 2	Hazardous to the aquatic environment, chronic, Category 2						
Aquatic Chronic 3	Hazardous to the aquatic environment, chronic, Category 3						
Asp. Tox. 1	Aspiration hazard, Category 1						
Eye Dam. 1	Serious eye damage, Category 1						
Skin Corr. 1A		Skin corrosion, Category 1A					
Skin Corr. 1B		Skin corrosion, Category 1B					
Skin Irrit. 2		Skin irritation, Category 2					
STOT RE 2	Specific target or	Specific target organ toxicity - repeated exposure, Category 2					
STOT SE 3	Specific target orç	gan toxicity - single	exposure, Category 3				
	_						

Supplemental information

Relevant changes compared with the previous version of the safety data sheet are marked with: *** This information is based on our present state of knowledge. However, it should not constitute a guarantee for any specific product properties and shall not establish a legally valid relationship.